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We report on implementation and performance of the program IMD, designed for short
range molecular dynamics simulations on massively parallel computers. After a short
explanation of the cell-based algorithm, its extension to parallel computers as well as two
variants of the communication scheme are discussed. We provide performance numbers
for simulations of different sizes and compare them with values found in the literature.
Finally we describe two applications, namely a very large scale simulation with more
than 1.23× 109 atoms, to our knowledge the largest published MD simulation up to this
day and a simulation of a crack propagating in a two-dimensional quasicrystal.

Keywords: Molecular Dynamics; Short Range Forces; Massively Parallel Computers;
Large Scale Simulations; Cell Algorithm.

1. Introduction

Molecular dynamics (MD for short) simulations are a powerful and widely used

tool in statistical physics, chemistry and material science.1 In MD, a classical many-

particle system together with a suitable particle interaction are modeling a fluid or a

solid. While conceptually simple, these simulations are computationally extremely

demanding. On one hand, a large number of particles is required, on the other also

a long simulation time (i.e., many time steps). Both factors add to the appetite for

computer resources.

Not surprisingly, much work has been devoted to the development of fast and

efficient MD algorithms. Moreover, these were adapted and augmented with each

new generation of computers, in order to make the best use of the contemporary

machines. For a recent review see Ref. 3.

In this article, we describe the molecular dynamics software IMD,† which is de-

signed for massively parallel computers like the Cray T3E or the Intel Paragon.

IMD implements a cell-based, scalable algorithm for short-range molecular dynam-

ics. It employs the SPMD programming paradigm, is written in C and uses the

∗Correspondence to: Jörg Stadler, Institut für Theoretische und Angewandte Physik, Pfaffen-
waldring 57, D-70550 Stuttgart, Germany. E-mail: joerg.stadler@itap.physik.uni-stuttgart.de.
†IMD stands for ITAP Molecular Dynamics.
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MPI message passing library. We discuss the implementation of IMD and report

performance numbers.

2. Computational Task

In MD the task is to solve the classical equations of motion for a system of N

particles over a time τ . The integration over time is done stepwise with a small time

step ∆t. At each time step the force Fi acting on particle i must be calculated. The

interaction between two particles is modeled by a pair potential Φ(r). It turns out

that the calculation of the forces is the most time consuming part of the simulation.

We restrict ourselves to short-range force laws, where two particles interact only

when they are closer than a cut-off distance rc. In that case, each particle interacts

on average with N sphere
neigh = 4π

3 ρr
3
c others (ρ being the density).

In the short range case considered here the interaction between particles is local

and the problem lends itself naturally to parallelization by domain decomposition.

Using domain decomposition has a long tradition in MD simulations. It has been

applied on monoprocessor systems by several authors (for a recent list, see Ref. 3)

to find pairs of interacting atoms. In MD, these algorithms are known as cell-based

schemes.

2.1. Basic algorithm

The total force Fi acting on particle i is the sum over all forces fij that other

particles exert on particle i. To calculate Fi we must know the positions rj of

all particles that are closer than rc to particle i. To find them, we use a geometric

algorithm based on the linked-cell method: A parallelepiped with periodic boundary

conditions forms the simulation box. It is subdivided into cells (see Fig. 1 for a

two-dimensional example). The atoms are assigned to the cells according to their

positions. The cell dimensions (i.e., the distances of opposite cell faces) are chosen

Fig. 1. Decomposition of the simulation box into cells.
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such that only particles of adjacent cells can be closer than rc and an integer number

of cells is covering the simulation box in each direction. To calculate Fi we need to

check the particles in its own cell and in the 13 surrounding cells (as indicated by

the arrows in Fig. 1 for the two-dimensional case). Since fij = −fji by Newton’s

third law, we must only consider each pair of atoms once and thus only half of

the neighbors of a given cell. If, for simplicity, we take the case of cubic cells with

dimension rc, for each particle we calculate it interaction with, N cell
neigh = 27

2 ρr
3
c

others on average.

IMD allocates memory for each cell such that the coordinates of the cell’s par-

ticles are stored in a contiguous block of memory. This organization has two main

advantages: First, it allows IMD to access memory in a linear, stride-one fashion

during the force calculation, and second, it allows us to send particle data of one

cell to other processors in a single MPI operation. The main drawback is that this

scheme results in a force calculation with a very short innermost loop. This loop,

which dominates the overall run-time, has iteration counts of about 30 in the bench-

mark case. IMD’s performance on vector-parallel machines, like the NEC SX4, is

therefore poor.

2.2. Extension to parallel computers

The extension of our cell-based scheme to parallel computers is straightforward:

IMD assumes that the processors are arranged on a three-dimensional cartesian

grid (with periodic boundaries), so each processor has 26 neighbors. We use MPI

to establish this topology. Our algorithm subdivides the array of cells in equally

sized parts which then are assigned to the processors. Since we assume that the

underlying physical system is homogenous, this amounts to assigning each processor

roughly the same number of particles. Figure 2 shows a two-dimensional example

of how the cells are associated with processors: A 12× 12 array of cells (shaded in

the figure) is distributed within a 3 × 3 grid of processors. A layer of empty cells

(non-shaded in the figure) is added to each processor. These are used as temporary

storage for particle data received from the neighbors. We call these extra cells

buffer cells. The outermost layer of non-empty cells, which forms the surface of a

processor’s part of the cell array, is called layer of surface cells. Particles in non-

surface cells interact only with particles on the same processor, whereas those in

surface cells also interact with particles in surface cells of the neighboring processors.

To calculate the forces for them, data from the surface cells are copied to the buffer

cells of the neighbors, as indicated by the arrows in Fig. 2. Let us denote with

Tcomm the time needed to move particle data between processors and with Tcalc the

time used for force calculation and time integration. In other words, Tcalc measures

the useful work done, while Tcomm measures the overhead due to communication.

Tcalc is proportional to the total number of cells, whereas Tcomm is proportional to

the number of surface cells. We can vary the ratio Tcomm/Tcalc by changing the

number of cells on a processor. When we assign more cells to a processor, Tcalc will
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Fig. 2. Assignment of cells to processors, a two-dimensional example. The white cells are the
buffer cells, the adjacent layer of cells (dotted in the center processor) are the surface cells.

increase faster than Tcomm, since the relative amount of surface cells decreases. The

number of cells on a processor corresponds to the number of local particles N/Np,

so Tcomm/Tcalc depends on N/Np.

The key points to consider for a parallel MD algorithm are communication,

scalability and load-balancing. As we pointed out, we can adjust the relative com-

munication overhead by changing N/Np. By the same argument we see that the

run-time should not change when we scale N and Np such that N/Np remains

constant. We assign roughly the same number of particles to each processor and

therefore expect that there is only little loss due to synchronization and that load

balancing is good a priori. But it is still desirable to execute only a small number

of communication operations per time step, since then the processors can run for a

longer time without synchronizing, thereby averaging over minor work inequalities.

2.3. Communication

Three communication steps have to be performed at each time step: First, the

particle positions have to be exchanged with the neighboring processors for the

force calculation, second, the forces accumulated due to Newton’s third law by

particles in the buffer cells are sent back to the original processor, and third, after

the positions have been updated, all atoms that have left or entered a processor’s

volume must be transferred to their new processor. IMD uses the standard MPI

library2 for interprocessor communication. As indicated by the arrows in Fig. 2,

data from each surface cell have to be sent to at least one neighbor at each time

step. If we communicate data of each cell with one MPI call, we create a large

number of small messages. Instead, one can collect all the data bound to a given

neighbor first in an intermediate buffer and then transfer the buffer with only one
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single MPI call. We have used both approaches — direct and with intermediate

buffers — and will discuss them in more detail.

2.3.1. Direct cell communication

As indicated by the arrows in Fig. 2, the simplest communication scheme is to

directly send the particle position data from the surface cells to the buffer cells of

the neighboring processors with one call to the MPI library per cell. We denote this

communication scheme as direct scheme.

Consider the case where a cubic array of cells with dimension c is assigned to

each processor. In three dimensions this algorithm will then perform 6c2 + 12c+ 8

MPI calls (one for each cell face on the surface, one for each edge and one for each

corner). Typical values of c lie in the range from 5 to 50, so from some hundred up

to several thousand communication calls are generated at each time step. Moreover,

IMD’s cell-to-cell communication is implemented in a save (see Ref. 2 p. 82ff) way,

i.e., it does not rely on buffering supplied by the message passing library. For

example, the size of the receiving buffer cell is checked and, if necessary, enlarged

to make sure that it can hold the arriving data before the actual send operation

is performed. This, as well as the large number of communication calls add to the

overhead but also to the robustness of the direct scheme.

2.3.2. Buffered scheme

The introduction of communication buffers improves the situation appreciably.

Atoms with a common destination are first copied from their cells to a buffer and

then sent in just one operation. Plimpton has shown in Ref. 6 that only six commu-

nication calls per time step (one for each face of a cube) are needed. This number

is independent of the number of cells on a processor. But Plimpton’s scheme re-

quires some overhead for the maintenance of the buffers, so we choose a simpler

approach. We use a buffer for each neighbor and collect all data with a common

destination. In that case we have to perform 26 communication operations per time

step. We also have to setup and maintain the send/receive buffers and we have

to transfer the atom data from the surface cells to the send buffers and from the

receive buffers to the buffer cells. The process of moving data between the cells

and send- or recieve-buffers is overlapped with the actual communication whenever

possible. The drawbacks of this scheme are firstly, that it uses extra memory for

the communication buffers, which is, as we will show, an important issue for very

large scale simulations, and secondly, that the size of the buffers is fixed for most

of the time and only adjusted periodically. Buffer overflows, that terminate the

simulation, are therefore possible. Fixed size buffers could have been avoided with

different implementation, but we felt that checking the buffer size at each time step

would be too much overhead, as it would introduce additional communication.

Tables 1 and 2 show the percentage of time used for communication with respect

to the total run-time for buffered and direct scheme. The numbers clearly show the

superiority of the buffered scheme.
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Table 1. Relative amount of communication with buffered scheme.

N Np N/Np Machine % Comm.

10,976 8 1,372 Cray T3E 9.3

10,976 16 686 Cray T3E 14.7

10,976 32 343 Cray T3E 21.8

10,976 64 172 Cray T3E 33.5

Table 2. Relative amount of communication with direct scheme.

N Np N/Np Machine % Comm.

10,976 8 1,372 Cray T3E 20.4

10,976 16 686 Cray T3E 27.0

10,976 32 343 Cray T3E 35.1

10,976 64 172 Cray T3E 45.4

2.4. actio=reactio

When the interaction between a pair of cells, say a and b is calculated, atoms

in both cells accumulate forces due to actio=reactio. If, however, the cells reside

on different processors, say a on processor A and b on B, the atom positions are

copied from a to the buffer cell â on B and from b to b̂ on A respectively. On

processor A not the actual atoms in b accumulate the forces, but only their copies

in b̂. We have two choices in this situation: First, we can calculate the forces for

the pair âb on B and for ab̂ on A, or, second, we can calculate only âb on B and

then send the forces accumulated in â to A, where they are added to the atoms in

a. The first choice means additional and redundant calculations since we do not

exploit actio=reactio across processors in that case. The second choice introduces

additional communication. We choose to use actio=reactio wherever possible, even

over processor boundaries. Whether this approach or the redundant calculation

is better, depends on the relative speed of communication and calculation on a

given machine and also on simulation parameters like rc or the complexity of the

force law employed. Our measurements for a monoatomic Lennard-Jones system

show, that using actio=reactio is always worthwhile as long as the fast, buffered

communication is used. With the slower direct cell communication scheme however,

there are some cases where it is better to avoid the additional communication. Since

the exploitation of Newton’s 3rd law across processor boundaries is favorable in some

cases but unfavorable in others, it is a user-selectable option in IMD.

3. Large Scale Simulations

Consider a cube of atoms, say with 1,000 atoms per edge. This is a tiny cube

in the real world, its edges measure about one micrometer, but it is a large cube
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for an MD simulation containing 109 atoms. So the question is, how large can

MD simulations be? Can we tackle problems of mesoscopic or even macroscopic

scale? How many atoms fit in a given machine’s memory? When we consider single

precision arithmetic each number uses four bytes of memory. For each atom, we

have to store at least position, momentum and force. So, in three dimensions, each

atom uses 36 bytes of memory. To simulate the cube discussed above, one needs

36 GB. The T3E installed at HWW in Stuttgart has 512 nodes with 128 MB per

node for a total of 64 GB. Of course, only a part of it can be used to store atom

coordinates. Considerable space is used by code and data of operating system and

also by code and internal data structures, like e.g., buffer cells, of IMD. We were

able to simulate 1,213,857,792 atoms on this machine, thereby using roughly 44 GB.

The direct cell communication scheme was used to save memory. It took 30 minutes

to complete 10 time steps. Details of this simulation are summarized in Table 3.

To our knowledge, this is the largest MD simulation reported up to today.

Table 3. Performance numbers.

Groups Machine N Np tstep tone
pair

s µs

current work T3E 296, 352 8 1.956 0.588

current work T3E 1, 000, 188 27 1.960 0.589

current work T3E 2, 370, 816 64 1.962 0.590

current work Paragon 2, 370, 816 64 22.552 6.780

current work SR2201 296, 352 8 3.675 1.105

current work T3E 1, 213, 857, 792 512 180 1.61

Lohmdahl et al. T3D 75, 000, 000 128 46.9 1.46

Plimpton Paragon 100, 000, 000 3680 3.5 2.34

Lohmdahl et al. CM-5 600, 000, 000 1024 242 7.51

4. High Speed Simulations

MD simulations can be large in two ways: The first, discussed above, is that one

often needs a large number of particles. This case is quite easy to parallelize since

it puts a large number of atoms on each processor, and, as mentioned earlier, the

relative communication overhead goes down as N/Np increases. The second is that

MD simulation often also requires a large number of time steps and therefore should

be as fast as possible. If we want to increase the speed of a simulation of given size,

we would like to use as many processors as reasonable. Adding processors means

decreasing N/NP while N remains constant, so we expect the overhead due to

communication to increase. Table 3 shows the time used for communication for

different N/Np. On the T3E, IMD needs about 600 atoms per processor to keep the

relative amount of communication below 30% of the total time. In that example,
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a system of 296,352 particles was propagated for 15 time steps per second on 512

processors.

5. Timing Results

Now that we have presented the general features of IMD, we want to discuss per-

formance in more detail. The speed of an MD simulation depends on the force law

employed. It is common practice in literature3,6 to use a monoatomic Lennard-Jones

system as a benchmark problem to compare algorithms. Several measures can be

given to characterize the performance: Various numbers are used in literature to

characterize performance: tstep and tparticle = tstep/N are the time used per time

step and the time used per time step and particle, respectively. tstep gives a direct

feeling of how many time steps can be done in a second, but depends on the system

size, tparticle is independent of system size, but still depends, as tstep, on rc and on

Np. Beazley et al.3 suggest the effective time per pair interaction should be defined

as tpair = tstep/(
4
3πr

3
cρN) = tparticle/

4
3πr

3
cρ and the one-processor effective time per

pair interaction defined as tone
pair = Nptpair for performance comparisons. Both num-

bers are independent of rc; t
one
pair is also independent of Np. They represent the time

used to calculate, in double precision, single Lennard-Jones interaction between a

pair of atoms and thus allow to compare the speed of simulation runs with different

rc and even different Np. Table 3 compares IMD for simulations of different sizes

and on different machines with some of the more recent performance data collected

in Ref. 7.

We will now discuss the scaling behavior of IMD. Our results are shown in Ta-

bles 4 and 5. Here we distinguish two cases: First we simultaneously increase the

system size and the number of processors, such that N/NP = const. According to

the scaling argument given above, the run-time should be constant. Our measure-

ments are presented in Table 4. We find, as we expect, nearly perfect scaling for 33

and 43, but a notable decrease of efficiency for 63 and 83 processors. In the second

case we increase NP while we keep N constant. Table 5 shows how the overhead

due to communication grows with decreasing N/NP .

Table 4. Scaling with N/NP = const.

Machine N NP N/Np tstep tone
pair % Efficiency

s µs

T3E 296, 352 8 37,044 1.956 0.588 100.0

T3E 1, 000, 188 27 37,044 1.960 0.589 99.7

T3E 2, 370, 816 64 37,044 1.962 0.590 99.6

T3E 8, 001, 504 216 37,044 2.161 0.650 90.5

T3E 18, 966, 528 512 37,044 2.479 0.745 78.9
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Table 5. Scaling with N = const.

Machine N NP N/Np tstep tone
pair % Efficiency

s µs

T3E 296,352 8 37, 044 1.956 0.588 100.0

T3E 296,352 27 10, 976 0.593 0.600 97.7

T3E 296,352 64 4, 630 0.258 0.621 94.7

T3E 296,352 216 1, 372 0.101 0.820 71.7

T3E 296,352 512 580 0.063 1.201 48.5

6. Example

As a general-purpose MD program, IMD was not developed with a special applica-

tion in mind. Currently it is used for a variety of problems. An example is the study

of crack propagation for two-dimensional models of quasicrystalline materials.7 Fig-

ure 3 is a snapshot of a simulation run on 64 processors. The rectangular strip

shown consists of roughly 250,000 atoms of a two-dimensional model quasicrystal.

The atoms are too dense to be depicted individually in this case, so we choose to

color-code the kinetic energy in the picture. Low values are represented by dark

colors, high values by light colors. The system starts with an initial temperature

close to zero. At the crack tip, bonds break during the crack’s movement thereby

they release energy into the system and generate sound waves, which are clearly

visible in the figure. To avoid reflection of the waves from the boundaries an el-

liptical stadium is created outside in which the waves are damped gradually by a

ramped friction term in the equations of motion.8 On the T3E, such simulations

are finished in just a few hours, which allows us to study a wide range of situations

and parameters.

Fig. 3. Snapshot of crack simulation.

7. Conclusion

Massively parallel computers add another dimension to the design of numerical

programs: The speeds of the memory and the processor are no longer the only

factors to consider. Also the speed of interprocessor communication must be taken
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into account. With the message passing library MPI, that allows us to control

the communication explicitly, we developed our code IMD for short-ranged molec-

ular dynamics simulations, that tries to find reasonable balance between the three

factors. One version of the code, that implements the direct cell communication

scheme, is suitable for very large scale simulations, while the other, using buffered

communication, speeds up smaller calculations considerably. Machines like the Cray

T3E are mighty tools for MD: With the large distributed memory (64 GB), we could

demonstrate a simulation with roughly 1.2 billion atoms using only three minutes

per time step. To our knowledge, this is the largest simulation reported up to now.

But while its size may be impressive, it is the speed that makes the parallel ma-

chines so valuable for research: Our simulations on crack propagation used to take

several days on fast workstations. Now, running on 64 processors of the T3E, they

are finished in just thirty minutes.
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